Plastid casein kinase 2 knockout reduces abscisic acid (ABA) sensitivity, thermotolerance, and expression of ABA- and heat-stress-responsive nuclear genes

نویسندگان

  • Yu Wang
  • Hongping Chang
  • Shuai Hu
  • Xiutao Lu
  • Congying Yuan
  • Chen Zhang
  • Ping Wang
  • Wenjun Xiao
  • Langtao Xiao
  • Gang-Ping Xue
  • Xinhong Guo
چکیده

Plastid casein kinase 2 (CK2) is a major Ser/Thr-specific enzyme for protein phosphorylation in the chloroplast stroma and its kinase activity is regulated by redox signals. To understand the role of CK2 phosphorylation of chloroplast proteins in abiotic stress signalling, an Arabidopsis plastid CK2 (CKA4) knockout mutant was investigated in terms of the plant response to abscisic acid (ABA) and heat stress. CKA4 expression was upregulated by ABA and heat treatment. The cka4 mutant showed reduced sensitivity to ABA during seed germination and seedling growth, and increased stomatal aperture and leaf water loss with a slightly reduced leaf ABA level. The cka4 mutant was more sensitive to heat stress than the wild-type Columbia-0. The expression levels of a number of genes in the ABA regulatory network were reduced in the cka4 mutant. Many heat-upregulated genes (heat-shock factors and heat-shock proteins) were also reduced in the cka4 mutant. The cka4 mutant showed reduced expression levels of plastid-encoded RNA polymerase target genes (atpB and psbA). CKA4 knockout mutation also resulted in a reduction in expression of some critical genes (PTM, ABI4, and PRS1) involved in retrograde signalling from the chloroplast to the nucleus. Similar results were observed in mutant plants with the knockout mutation in both CKA4 and CKA3, which encodes a nuclear CK2 α3 subunit. CKA3 expression was not responsive to ABA and heat stress. These results suggest that CKA4 is an enhancing factor in abiotic stress signalling through modulating the expression of some molecular players in retrograde signalling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of some stress-responsive genes in tomato plants treated with ABA and sulfonamide compounds. Leila Zeinali Yedegari1 and Nayer Mohammadkhani2*

Drought causes an increase in some gene expression in plant tissues such as plasma membrane intrinsic proteins type 1 (PIP1), 9-cis-epoxycarotenoid dioxygenase (NCED) SlAREB1. The effects of exogenous abscisic acid (ABA) and two sulfonamide compounds, namely, sulfacetamide (Sa) and sulfasalazine (SS) were studied on gene expression of tomato (Lycopersicon esculentum Mill. Cv. Super chief) under...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice

Although allelic diversity of genes has been shown to contribute to many phenotypic variations associated with different physiological processes in plants, information on allelic diversity of abiotic stress-responsive genes is limited. Here it is shown that the alleles OsWRKY45-1 and OsWRKY45-2 play different roles in abscisic acid (ABA) signalling and salt stress adaptation in rice. The two al...

متن کامل

Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis

Abscisic acid (ABA) is known to play roles in regulating plant tolerance to various abiotic stresses, but whether ABA's effects on heat tolerance are associated with its regulation of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) is not well documented. The objective of this study was to determine whether improved heat tolerance of tall fescue (Festuca arundinacea Schr...

متن کامل

Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress.

Ammonium (NH(4)(+)) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH(4)(+) toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH(4)(+). Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014